您好,欢迎来到试剂仪器网! [登录] [免费注册]
试剂仪器网
位置:首页 > 资料中心 > 行业百科
百科分类
仪器
分析仪器
其它通用分析仪器
实验室常用设备
光学仪器及设备
物性测试仪器及设备
测量/计量仪器
环境监测仪器
生命科学仪器/设备
行业专用仪器
工业在线及过程控制仪器
配件、耗材与服务
试剂与耗材
通用试剂
检测试剂
试剂盒
细胞
基因与染色体
机械设备
通用设备
原料、中间体、气体
原料、中间体
农用化学品
气相色谱仪器(GC)
简介

气液色谱法(英语:Gas chromatography,又称气相层析)是一种在有机化学中对易于挥发而不发生分解的化合物进行分离与分析的色谱技术。气相色谱的典型用途包括测试某一特定化合物的纯度与对混合物中的各组分进行分离(同时还可以测定各组分的相对含量)在某些情况下,气相色谱还可能对化合物的表征有所帮助。在微型化学实验中,气相色谱可以用于从混合物中制备纯品。
  GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离,其过程如图气相分析流程图所示。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。

原理

    气相色谱中的流动相(或活动相)是载气,通常使用惰性气体(如氦气)或反应性差的气体(如氮气)。固定相则由一薄层液体或聚合物附着在一层惰性的固体载体表面构成。固定相装在由玻璃或金属制成的一根空心管柱内(称为色谱柱)。用作进行气相色谱的仪器称为气相色谱仪(或“气体分离器”)。
    (1)载气系统 气相色谱仪中的气路是一个载气连续运行的密闭管路系统。整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确。   
    (2)进样系统 进样就是把气体或液体样品速而定量地加到色谱柱上端。   
    (3)分离系统 分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。色谱柱分为填充柱和毛细管柱两类。
    (4)检测系统 检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图。   
    (5)信号记录或微机数据处理系统 近年来气相色谱仪主要采用色 谱数据处理机。色谱数据处理机可打印记录色谱图,并能在同一张记录纸上打印出处理后的结果,如保留时间、被测组分质量分数等。   
    (6)温度控制系统 用于控制和测量色谱柱、检测器、气化室温度,是气相色谱仪的重要组成部分。

分析方法

    分析方法实际上是在某一特定的气相色谱分析中使用的一系列条件。建立分析方法实际上是确定对于某一分析的最佳条件的过程。

    为了满足某一特定的分析的要求,可以改变的条件包括进样口温度,检测器温度,色谱柱温度及其控温程序,载气种类及载气流速,固定相,柱径,柱长,进样口类型及进样口流速,样品量,进样方式等。检测器还可能有其它可供调节的参数,这取决于所使用的检测器类型。有一些气相色谱仪还有可以控制样品与载气流向的阀门,这些阀门开启与关闭的时间也可能对分析的效果有重要影响。

    载气选择与载气流速

    典型的载气包括氦气、氮气、氩气、氢气和空气。通常,选用何种载气取决于检测器的类型。例如,放电离子化检测器(DID)需要氦气作为载气。不过,当对气体样品进行分析的时候,载气有时是根据样品的母体选择的,例如,当对氩气中的混合物进行分析时,最好用氩气作载气,因为这样做可以避免色谱图中出现氩的峰。安全性与可获得性也会影响载气的选择,比如说,氢气可燃,而高纯度的氦气某些地区难以获得。

    很多时候,检测器不仅仅决定了载气的种类,还决定了载气的纯度(虽然对灵敏度的要求也在很大程度上影响载气纯度的要求)。通常来说,气相色谱中所用的载气,纯度应该在99.995%以上。用于标识纯度的典型商品名包括“零点气级”,“高纯度(UHP)级”,“4.5级”和“5.0级”。

    载气流速对分析的影响在方式上与温度类似(见下文)。载气流速越高,分析速度越快,但是分离度越差。因此,最佳载气流速的选择与柱温的选择一样,都需要在分析速度与分离度之间取得平衡。

    二十世纪九十年代之前生产的气相色谱仪的载气流速往往通过载气入口的压力(柱前压)进行控制,实际的载气流速则在柱的出口端通过电子流量计或皂膜流量计进行测定。这样的一个过程常常很复杂,很耗时间,而且往往令人沮丧。在整个运行过程中,柱前压不能再改变,气流必须稳定。气体流速与柱前压的关系可以通过可压缩流体的Poiseuille方程来计算。

不过,很多现代的气相色谱仪已经能用电路自动测定气体流速,并通过自动控制柱前压来控制流速。因此,载气压强与流速可以在运行过程中调整。柱前压/气流控制程序(与温度控制程序类似)随之出现。

    进样口类型与流速

    进样口类型和进样技术通常与样品存在的形态(液态、气态、被吸附、固态)以及是否存在需要气化的溶剂有关。如果样品分散良好,并且性质已知,那么它就可以通过冷柱头进样口直接进样;如果需要蒸发除去部分溶剂,就使用分流/不分流进样口(通常用注射器进样);气体样品(如来自气缸)通常用气体阀进样器进样。被吸附的样品(如在吸附管上)可以通过外部的(在线或离线)解吸装置(如捕集-吹扫系统)或者在分流/不分流进样器中解吸(使用固相微萃取技术)。

    样品量与进样技术

    进样技术
    真正的气相色谱分析过程从样品进入色谱柱开始。毛细管气相色谱法的发展使得进样技术面临着很多实践中的问题。柱上进样技术多用于填充柱而不适用于毛细管柱。在毛细管气相色谱仪中的进样技术应该满足以下两个条件:

    进样量不得超过柱的容量;
    与展开过程引起的样品展宽相比,进样后的塞式流宽度应该很小。如果不能满足这一要求,色谱柱的分离能力将会下降。一个普遍的规则是,注入的体积,Vinj,和检测器的体积,Vdet,应该只有样品中包含被分析物的部分出柱时的体积的十分之一。
    以下是一些优秀进样技术应当满足的一般要求:

    应该能使色谱柱达到它的最佳分离效率;
    对于小量的有代表性的(典型)样品,进样应具有准确性和可重现性;
    不能改变样品组成(对于具有不同的沸点、极性、浓度与热力学稳定性的物质,进样过程中不应有所差异);
    应该既适用于痕量分析,也适用于浓度相对较大的样品。
    但是,也有一些问题存在于当前的进样技术中,即使这并不是破坏性问题。

    即便最好的进样口注射器声称其有3%的精度,但是在非专业人士的操作中仍然会产生较大的误差。
    射针(Needle)在射出样品的时候也许会从隔膜上切下小块的胶(rubber)。这也许会堵住射针并且导致下一次使用时注射器填充出现问题。这可能不是一个能被明显发现的问题。
部分的样品可能在从注射器的连续射出后困在隔膜中。这会导致后来的色谱图中产生鬼峰(Ghost Peak)。
射针的末端可能使一些易挥发的样品组分蒸发,产生选择性的样品损失。
   

    色谱柱的选择

    色谱柱的选择取决于样品以及测定。在选择色谱柱时,混合物的极性是一项主要的化学属性因素,但是其官能团的作用也会影响到色谱柱的选择。样品的极性必须与色谱柱固定相的极性非常匹配,来增加分辨率和分离度,同时减少了运行时间。固定相的膜厚,色谱柱的长度和直径也都会影响分离度和运行时间。

    柱温与温度控制程序

    一个已经拆开以显示出内部毛细管柱的气相色谱仪恒温箱
    气相色谱仪中的色谱柱放置于温度由电子电路精确控制的恒温箱内。(当分析者说“柱温”时,他实际上指的是恒温箱的温度。不过这种区别并不重要,因此在下文中对这两者并不作区分。)

    样品通过色谱柱的速率与温度正相关。柱温越高,样品越快通过色谱柱。但是,样品越快通过色谱柱,它与固定相之间的相互作用就越少,因此分离效果越差。

    通常来说,柱温的选择是综合考虑分离时间与分离度的结果。

    柱温在整个分析过程中不变的方法称为恒温方法。不过,在大部分的分析方法中,柱温随着分析过程的进行逐渐上升。初温,升温速率(温度“斜率”)与末温统称为控温程序。

    控温程序使得较早被洗脱的被分析物能够得到充分的分离,同时又缩短了较晚被洗脱的被分析物通过色谱柱的时间。

数据整理与分析

    定性分析

    一般来说,色谱分析的结果用色谱图来表示。在色谱图中,横坐标为保留时间,纵坐标为检测器的信号强度。色谱图中有一系列的峰,代表着被分析物中在不同的时间被洗脱出来的各种物质。在分析条件相同的前提下,保留时间可以用于表征化合物。同时,在分析条件相同时,同一化合物的峰的形态也是相同的,这对于表征复杂混合物很有帮助。然而,现代的气相色谱分析很多时候采用联用技术,即气相色谱仪与质谱仪或其它能够表征各峰对应化合物的简单检测器相连。

    定量分析

    在色谱图中,峰面积与分析物的含量成正比。通过用积分计算峰面积,可以定出分析物中各组分的浓度。分析物的浓度也可以通过校准曲线来获得。通过配制一系列浓度的标准样品并测量它们的响应(信号强度)可以绘制出校准曲线。分析物的浓度还可以通过被分析物的相对响应因子来确定。相对响应因子指的是被分析物的信号与内标物(或外标物)的预期响应比值,它可以通过固定内标物(一种加入到样品之中并具有标准浓度,且保留时间与被分析物不同的化合物)的含量而改变被分析物的含量,观察信号响应的变化来计算。
    在大多数现代的气相色谱-质谱联用系统之中,计算机软件可以绘画色谱图,积分峰面积,并自动将质谱图与文献标准图进行比对。

 

上一篇:软件/LIMS
下一篇:微型、便携式气相色谱仪
相关产品