稀土有“工业维生素”的美称。现如今已成为极其重要的战略资源。稀土元素氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc) 和钇(Y)共17 种元素的氧化物。稀土元素在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用,随着科技的进步和应用技术的不断突破,稀土氧化物的价值将越来越大。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组:
轻稀土包括:镧、铈、镨、钕、钷、钐、铕、钆。
重稀土包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。
按矿物特点分类:
铈组(轻稀土)—镧、铈、镨、钕、钷、钐和铕;
钇组(重稀土)—钆、铽、镝、钬、铒、铥、镱、镥和钪。
按萃取分离分类:
轻稀土(P204弱酸度萃取)—镧、铈、镨、钕;
中稀土(P204低酸度萃取)—钐、铕、钆、铽和镝;
重稀土(P204中酸度萃取)—钬、铕、铒、铥、镱、镥、钇。
一是缺少硫化物和硫酸盐(只有极个别的),这说明稀土元素具有亲氧性;
二是稀土的硅酸盐主要是岛状,没有层状、架状和链状构造;
三是部分稀土矿物(特别是复杂的氧化物及硅酸盐)呈现非晶质状态;
四是稀土矿物的分布,在岩浆岩及伟晶岩中以硅酸盐及氧化物为主,在热液矿床及风化壳矿床中以氟碳酸盐、磷酸盐为主。富钇的矿物大部分都赋存在花岗岩类岩石和与其有关的伟晶岩、气成热液矿床及热液矿床中;
五是稀土元素由于其原子结构、化学和晶体化学性质相近而经常共生在同一个矿物中,即铈族稀土和钇族稀土元素常共存在一个矿物中,但这类元素并非等量共存,有些矿物以含铈族稀土为主,有些矿物则以钇族为主。
在已发现的250多种稀土矿物和含稀土元素的矿物,适合现今选冶条件的工业矿物仅有10余种:
原矿
独居石
独居石(Monazite)又名磷铈镧矿。
化学成分及性质:(Ce,La,Y,Th)[PO4]。成分变化很大。矿物成分中稀土氧化物含量可达50~68%。类质同象混入物有Y、Th、Ca、[SiO4]和[SO4]。独居石溶于H3PO4、HClO4、H2SO4中。
晶体结构及形态:单斜晶系,斜方柱晶类。晶体成板状,晶面常有条纹,有时为柱、锥、粒状。
物理性质:呈黄褐色、棕色、红色,间或有绿色。半透明至透明。条痕白色或浅红黄色。具有强玻璃光泽。硬度5.0~5.5。性脆。比重4.9~5.5。电磁性中弱。在X射线下发绿光。在阴极射线下不发光。
生成状态:产在花岗岩及花岗伟晶岩中;稀有金属碳酸岩中;云英岩与石英岩中;云霞正长岩、长霓岩与碱性正长伟晶岩中;阿尔卑斯型脉中;混合岩中;及风化壳与砂矿中。
用途:主要用来提取稀土元素。
产地:具有经济开采价值的独居石主要资源是冲积型或海滨砂矿床。最重要的海滨砂矿床是在澳大利亚沿海、巴西以及印度等沿海。此外,斯里兰卡、马达加斯加、南非、马来西亚、中国、泰国、韩国、朝鲜等地都含有独居石的重砂矿床。
独居石的生产近几年呈下降趋势,主要原因是由于矿石中钍元素具有放射性,对环境有害。
氟碳铈矿
化学成分性质:(Ce,La)[CO3]F。机械混入物有SiO2、Al2O3、P2O5。氟碳铈矿易溶于稀HCl、HNO3、H2SO4、H3PO4。
晶体结构及形态:
六方晶系。复三方双锥晶类。晶体呈六方柱状或板状。细粒状集合体。
物理性质:黄色、红褐色、浅绿或褐色。玻璃光泽、油脂光泽,条痕呈白色、黄色,透明至半透明。硬度4~4.5,性脆,比重4.72~5.12,有时具放射性、具弱磁性。在薄片中透明,在透射光下无色或淡黄色,在阴极射线下不发光。
生成状态:产于稀有金属碳酸岩中;花岗岩及花岗伟晶岩中;与花岗正长岩有关的石英脉中;石英─铁锰碳酸盐岩脉中;砂矿中。
用途:它是提取铈族稀土元素的重要矿物原料。铈族元素可用于制作合金,提高金属的弹性、韧性和强度,是制作喷气式飞机、导弹、发动机及耐热机械的重要零件。亦可用作防辐射线的防护外壳等。此外,铈族元素还用于制作各种有色玻璃。
磷钇矿
化学成分及性质:Y[PO4]。成分中Y2O361.4%,P2O538.6%。有钇族稀土元素混入,其中以镱、铒、镝、钆为主。尚有锆、铀、钍等元素代替钇,同时伴随有硅代替磷。一般来说,磷钇矿中铀的含量大于钍。磷钇矿化学性质稳定。晶体结构及形态:四方晶系、复四方双锥晶类、呈粒状及块状。
物理性质:黄色、红褐色,有时呈黄绿色,亦呈棕色或淡褐色。条痕淡褐色。玻璃光泽,
油脂光泽。硬度4~5,比重4.4~5.1,具有弱的多色性和放射性。
生成状态:主要产于花岗岩、花岗伟晶岩中。亦产于碱性花岗岩以及有关的矿床中。在砂矿中亦有产出。 用途:大量富集时,用作提炼稀土元素的矿物原料。
镧钒褐帘石
日本山口大学、爱媛大学和东京大学的联合研究小组发表一份公报说,他们在三重县发现了一种含有稀土的新品种矿物。稀土在改造传统产业和发展高新技术领域当中具有“点石成金”的作用。而新矿物是2011年4月在三重县伊势市的山中发现的,它是含有稀土镧和稀有金属钒的一种特殊褐帘石。2013年3月1日,这种矿物被国际矿物学协会认定为新矿物,并被命名为“镧钒褐帘石”。
成品
碳酸氯化稀土
这是稀土工业中最主要的两种初级产品,一般地说,当前有两个主要工艺生产这两种产品。
一个工艺是浓硫酸焙烧工艺,即把稀土精矿与硫酸混合在回转窑中焙烧。经过焙烧的矿用水浸出,则可溶性的稀土硫酸盐就进入水溶液,称之为浸出液。然后往浸出液中加入碳酸氢铵,则稀土呈碳酸盐沉淀下来,过滤后即得碳酸稀土。
另一种工艺叫烧碱法工艺,简称碱法工艺。一般是将60%的稀土精矿与浓碱液搅匀,在高温下熔融反应,稀土精矿即被分解,稀土变为氢氧化稀土,把碱饼经水洗除去钠盐和多余的碱,然后把水洗过的氢氧化稀土再用盐酸溶解,稀土被溶解为氯化稀土溶液,调酸度除去杂质,过滤后的氯化稀土溶液经浓缩结晶即制得固体的氯化稀土。
磷矿稀土
自然界的稀土元素除了赋存在各种稀土矿中外, 还有相当大的一部分与磷灰石和磷块岩矿共生。由于稀土的离子半径(0. 848~0. 106 nm)与 Ca2+(0. 106 nm)很接近,稀土以类质同象方式赋存于磷矿岩中。世界磷矿总储量约为 1000亿吨,稀土平均含量为 0. 5‰,估计世界磷矿中伴生的稀土总量为5000万吨。
针对矿中稀土含量低及其赋存状态特殊等特点,国内外已经开展了多种回收工艺研究,可分为湿法和热法:
湿法中,根据分解酸不同又可分为硝酸法、盐酸法、硫酸法。从磷化工过程回收稀土有多种,均和磷矿加工方式密切相关。
热法生产过程中, 稀土主要进入硅酸盐熔渣中,可采用大量盐酸或硝酸分解浸出, 过滤除去硅石后,再采用TBP等萃取回收稀土, 稀土回收率可以达到60%。
随着磷矿资源不断利用,正转向低品质磷矿的开发, 硫酸湿法磷酸工艺成为磷化工主流方法,对硫酸湿法磷酸中的稀土进行回收已成为研究热点。在硫酸湿法磷酸生产过程中,通过控制稀土在磷酸中的富集, 再采用有机溶剂萃取提取稀土的工艺比早期开发的方法更具有优势。
混合稀土
由稀土矿中提取出含有镧、铈、镨、钕及少量钐、铕、钆混合的氧化物或氯化物经熔盐电解制出的金属。稀土总量大于98%,铈大于48%的轻稀土。在空气中易氧化为黑色,室温下能和水反应,升温而加快。可做打火石、合金添加剂、贮氢材料等。
军事方面
稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显著的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、钛合金的战术性能。而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,正缘于稀土科技领域的超人一等。
冶金工业
稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。
石油化工
用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。
玻璃陶瓷
主要包括一下几个方面:超导陶瓷、压电陶瓷、导电陶瓷、介电陶瓷及敏感陶瓷等。
稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃、眼镜片、显像管、示波管、平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。
随着材料科学的发展,近年来功能复合陶瓷备受关注,稀土掺杂在功能复合陶瓷的开发研究方面也取得了较大进展。浙江大学陈昂等,采用常规功能陶瓷的制备方法,YBa2Cu3O7-x和铁电陶瓷BaTiO3复合,获得了铁电性与超导性共存的YBa2Cu3O7-x-BaTiO3系复合功能陶瓷,其电导特性符合三维导电行为,并当YBa2Cu3O7-x含量较高时呈超导性。华中理工大学周东祥等的研究指出,LaCoO3-SrCoO3系和LaCrO3-SrCrO3系复合功能陶瓷,可用作磁流体电机的电极材料和气敏材料;而在NTC 热敏复合材料NiMn2O4-LaCrO3陶瓷中,新化合物LaMnO3导电相决定着陶瓷的主要性质。西安交通大学的邹秦等通过用稀土离子Y3+、 La3+对(Sr,Ca)TiO3掺杂,省去了原有的用碱金属离子(Nb5+、Ta5+)涂覆并进行热扩散的工艺,而且制得的陶瓷材料致密度高、工艺性能良好,并保持了电阻率低(ρ为10-2Ω/cm量级)、非线性高(非线性系数α﹥10)的介电-压敏复合功能特性。
智能陶瓷是指具有自诊断、自调整、自恢复、自转换等特点的一类功能陶瓷。如前所述在锆钛酸铅(PZT)陶瓷中添加稀土镧而获得的锆钛酸铅镧(PLZT)陶瓷,不但是一种优良的电光陶瓷,而且因其具有形状记忆功能,即体现出形状自我恢复的自调谐机制,故也是一种智能陶瓷。智能陶瓷材料概念的提出,倡导了一种研制和设计陶瓷材料的新理念,对拓宽稀土在近代功能陶瓷中应用极为有利。近年的研究还表明,稀土在生物陶瓷、抗菌陶瓷等新型陶瓷材料中也有着独特的作用。由于稀土元素可与银、锌、铜等过渡元素协同增效,开发的稀土复合磷酸盐抗菌可使陶瓷表面产生大量的羟基自由基,从而增强了陶瓷的抗菌性能。
稀土陶瓷颜料主要是指五种色相的组合着色锆英石基稀土陶瓷颜料。它可用作彩釉砖、外墙砖、地砖等建筑陶瓷的装饰材料,尤其适用于卫生洁具陶瓷制品的彩饰,还可用作瓷器釉上彩、釉中彩和釉下彩的色基。组合着色锆英石基稀土陶瓷颜料,是以二氧化锆、二氧化硅为基质材料,以过渡元素和稀土元素为组合着色剂,添加少量矿化剂,经高温900~1150℃固相反应合成。其主要技术指标如下:色相有红、黄、蓝、绿和灰,稳定性小于或等于1280℃最高可达1300℃),适应气氛为氧化焰,颗粒直径小于15μm的不少于92%,大于30μm 者为零新材料
稀土钴及钕铁硼永磁材料,具有高剩磁、高矫顽力和高磁能积,被广泛用于电子及航天工业;纯稀土氧化物和三氧化二铁化合而成的石榴石型铁氧体单晶及多晶,可用于微波与电子工业;用高纯氧化钕制作的钇铝石榴石和钕玻璃,可作为固体激光材料;稀土六硼化物可用于制作电子发射的阴极材料;镧镍金属是70年代新发展起来的贮氢材料;铬酸镧是高温热电材料;当前世界各国采用钡钇铜氧元素改进的钡基氧化物制作的超导材料,可在液氮温区获得超导体,使超导材料的研制取得了突破性进展。此外,稀土还广泛用于照明光源,投影电视荧光粉、增感屏荧光粉、三基色荧光粉、复印灯粉;在农业方面,向田间作物施用微量的硝酸稀土,可使其产量增加5~10%;在轻纺工业中,稀土氯化物还广泛用于鞣制毛皮、皮毛染色、毛线染色及地毯染色等方面。
农业方面
研究结果表明,稀土元素可以提高植物的叶绿素含量,增强光合作用,促进根系发育,增加根系对养分吸收。稀土还能促进种子萌发,提高种子发芽率,促进幼苗生长。除了以上主要作用外,还具有使某些作物增强抗病、抗寒、抗旱的能力。
大量的研究还表明,使用适当浓度稀土元素能促进植物对养分的吸收、转化和利用。玉米用稀土拌种,出苗、拔节比对照早1~2天,株高增加0.2米,早熟3~5天,而且籽粒饱满,增产14%。大豆用稀土拌种,出苗提早1天,单株结荚数增加14.8~26.6个,3粒荚数增多,增产14.5%~20.0%。喷施稀土可使苹果和柑橘果实的Vc含量、总糖含量、糖酸比均有所提高,促进果实着色和早熟。并可抑制贮藏过程中呼吸强度,降低腐烂率。