您好,欢迎来到试剂仪器网! [登录] [免费注册]
试剂仪器网
位置:首页 > 产品库 > Atractylenolide I
立即咨询
咨询类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
请详细说明您的需求。
*验证码:
 
Atractylenolide I
本产品不向个人销售,仅用作科学研究,不用于任何人体实验及非科研性质的动物实验。
Atractylenolide I图片
包装:20mg
市场价:3434元

产品介绍
Atractylenolide I 是一种来自白术根茎的倍半萜,具有多种生物活性,如神经保护、抗过敏、抗炎和抗癌特性。 Atractylenolide I 降低 A375 细胞中磷酸化 JAK2 和 STAT3 的蛋白质水平,并充当 TLR4 拮抗剂。

Cell experiment:

Briefly, serum starved VSMCs are pre-treated with indicated concentration of Atractylenolide I for 1 h followed by stimulation with Ox-LDL for 24 h. The purple formazan crystals formed after addition of MTT are solubilized in DMSO and absorbance is measured at 540 nm. The viability or proliferation rate is calculated as percentage of control (untreated VSMCs)[3].

Animal experiment:

Mice[2]After adaption for one week, 48 male ICR mice are randomly divided into six groups (eight mice per group): Control group (unstressed + saline vehicle), model group (CUMS + saline vehicle), three Atractylenolide I treatment groups (CUMS + Atractylenolide I) and a fluoxetine group (CUMS + FLU). From the 4th week, Atractylenolide I (5, 10 or 20 mg/kg) or fluoxetine (20 mg/kg) is daily administered by oral gavage for 3 weeks. After the last administration of Atractylenolide I or fluoxetine, behavioral tests are performed[2].

产品描述

Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.

Atractylenolide I (40, 60, 80, 100, 120, 150 μM) dose- and time-dependently reduces the cell viability in human A375 melanoma cells after treatment for 24, 48 and 72 hours. Atractylenolide I (50 and 100 μM) induces apoptosis of A375 cells in a dose-dependent manner at 48 h of treatment. Atractylenolide I (100 μM) significantly reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, without effect on total JAK2 and STAT3. Furthermore, Atractylenolide I inhibits the mRNA expression of STAT3-targeted genes, including Bcl-xL, MMP-2 and MMP-9[1]. Atractylenolide I (up to 100 μM) shows no toxicity in normal cells. Atractylenolide I (25, 50 μM) decreases the Ox-LDL induced TNF-α, IL-6 and NO production in VSMCs. Atractylenolide I (12.5, 25 or 50 μM) significantly reduces the level of MCP-1 and inhibits Ox-LDL-induced VSMCs proliferation and migration. Atractylenolide I (25, 50 μM) inhibits positive staining of foam cells, and also significantly decreases lipid accumulation. Atractylenolide I (50 μM) suppresses p38MAPK and NF-κB p65 expression in VSMCs stimulated by Ox-LDL[3]. Atractylenolide I (1, 10, 100 μM) downregulates paclitaxel-induced expression of VEGF and survivin via MyD88-dependent TLR4 signaling in EOC cells[4].

Atractylenolide I (5, 10 or 20 mg/kg, p.o.) restores the decreased body weight in mice subjected to chronic unpredictable mild stress (CUMS). Atractylenolide I alleviates CUMS-induced depressive-like behavior, attenuates CUMS-induced imbalances in hippocampal neurotransmitter levels and reduces CUMS-induced increases in hippocampal pro-inflammatory cytokine levels and in the NLRP3 inflammasome in the hippocampi of mice[2].

References:
[1]. Atractylenolide I, et al. The JAK2/STAT3 pathway is involved in the anti-melanoma effects of atractylenolide I. Exp Dermatol. 2018 Feb;27(2):201-204.
[2]. Gao H, et al. Anti-depressant-like effect of atractylenolide I in a mouse model of depression induced by chronic unpredictable mild stress. Exp Ther Med. 2018 Feb;15(2):1574-1579.
[3]. Li W, et al. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro. Exp Cell Res. 2017 Apr 1;353(1):26-34.
[4]. Huang JM, et al. Atractylenolide-I sensitizes human ovarian cancer cells to paclitaxel by blocking activation of TLR4/MyD88-dependent pathway. Sci Rep. 2014 Jan 23;4:3840.