清华大学仿生石墨烯压力传感器研究取得重要进展
1月29日,清华大学微电子系任天令教授团队在《美国化学学会·纳米》(ACS Nano)上发表了题为《仿生针刺随机分布结构的高灵敏度和宽线性范围石墨烯压力传感器》(Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for H
零重力石墨烯有望在太空获得成功
通过一系列激动人心的实验,剑桥研究人员完成了石墨烯在太空空间中的失重测试。剑桥石墨烯中心的研究人员首次在微重力条件下测试了石墨烯,这也是石墨烯旗舰和欧洲空间局之间合作的一部分。研究人员为了测试石墨烯在卫星冷却系统中的潜力,研究了抛物线飞行(也被称为“呕吐彗星”)中的失重 。剑桥的石墨烯中心主任Andrea Ferrari教授说:“我们知道石墨烯有很多应用。早
石墨烯
2018.02.27
韩国研究团队发明纳米表面活性剂生物技术
韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。 表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特
表面活性剂
2018.02.27
蒸发铜对石墨烯制备系统可靠性的影响
现如今,以铜为基底和催化剂通过CVD法制备石墨烯已经成为一种重要的大面积石墨烯制备方法。人们在石墨烯的生长机理的探究和制备工艺的优化上都进行了大量的研究。在早期,人们的关注点主要在于温度、压强、气氛等理想状态下的参数。但是近来,越来越多的研究发现,实际生产过程中引入的杂质和反应体系的污染,即便是微乎其微,也会对石墨烯的生长产生重大影响。例如,在铜箔的制造
航空航天用金属玻璃材料问世
德国萨尔州大学研究人员开发出一种新的非晶态金属钛硫合金,这种合金也称为金属玻璃,其性能与常规钛合金完全不同,特别适合用作航空航天的轻质部件。这一成果获得大学知识与技术转化中心颁发的发明人奖。 材料研究类似于数以千计的拼图游戏,如果没有找到合适的开始部分,要想获得完整的图片就非常困难。萨尔州大学3名博士研究生亚历山大·库巴、贝内迪克·博希特勒和奥利弗·格
模拟自然光合作用体系光电分解水制氢研究获进展
近日,由中国科学院院士、中科院大连化学物理研究所催化基础国家重点实验室、太阳能研究部研究员李灿指导的博士生叶盛等人,在模拟自然光合作用构建高效的人工光合体系的研究中取得新进展。科研人员基于仿生的概念,将部分氧化的石墨烯和空穴储存层相结合,大幅度提高了光生电荷分离效率,从而实现了高效的光电催化分解水制氢,相关研究结果以全文的形式发表在《美国化学会志》上(J.
针对生物成像开发的柔性纳米石墨烯!
一支由国际科学家组成的团队研发出了一种水溶性“扭曲纳米石墨烯”,这是一种灵活的分子,具有生物相容性的同时,显示出在荧光细胞成像方面的应用前景。而当细胞暴露于蓝色激光时,这种新石墨烯分子会诱导其死亡。因此需要进一步研究以确定纳米碳如何应用于一系列生物相关应用,比如癌症治疗的光动力治疗。名古屋大学和波士顿学院的一组化学家和生物学家已成功地首次合成水溶性扭曲纳米分
石墨烯
2018.02.24
大连化物所“绿色合成”对二甲苯研究取得进展
近日,中国科学院大连化学物理研究所航天催化与新材料研究中心副研究员李昌志、研究员王爱琴和中科院院士张涛团队在绿色对二甲苯(PX)合成路线中取得新进展,设计出一条以木质纤维素资源生物发酵产物(生物基异戊二烯)和甘油脱水产物(丙烯醛)为原料,利用碳化钨催化分子内氢转移串联反应的合成路线。该反应可实现PX总收率高达90%。 芳烃是重要的石化产品,PX作为最主
大连化物所模拟自然光合作用体系光电分解水制氢研究获进展
近日,由中国科学院院士,中科院大连化学物理研究所催化基础国家重点实验室、太阳能研究部研究员李灿指导的博士生叶盛等人,在模拟自然光合作用构建高效的人工光合体系的研究中取得新进展。科研人员基于仿生的概念,将部分氧化的石墨烯和空穴储存层相结合,大幅度提高了光生电荷分离效率,从而实现了高效的光电催化分解水制氢,相关研究结果以全文的形式发表在《美国化学会志》上(J
同位素储能有望为新电池铺平道路
核电池示意图 近年来,光伏发电的成本持续下降,新一代电池在效率极限方面面临极大的压力。因此,在我们能够以可持续的方式产生和使用电力之前,能源储存似乎是我们所面临的重大技术挑战。如今,由美国陆军研究实验室的科学家们领导的一项新研究有望为新型同位素电池铺平道路。 尤其对于军队来说,电池的能量密度一直是一个大问题。更高的能量密度可以延长关键设备的运行时间,但给
新技术使商用锂离子电池充电速度快5倍
图为一个锂电池温度传感器(图片来源:华威大学工程学院)沃里克大学工程学院的研究人员已经开发出一种新的直接精确测试锂离子电池的内部温度和电极电位的技术,并且发现该电池的安全充电速度是目前常用电池充电上限的五倍。这项新技术在电池正常工作期间就地工作,不会妨碍其性能,并且已经在标准的市售电池上进行了测试。这种新技术将促进电池材料科学的进步,电池充电速率的灵活,新型
宁波材料所利用长程磁耦合机制设计和制备高性能热变形钕铁硼磁体
在稀土永磁材料领域,利用磁性相在纳米或亚微米等微观尺度下的耦合机制研究开发宏观磁均一的磁性材料工艺已较为成熟,然而对于更大尺度范围内磁耦合现象的研究,尤其是利用这种长程耦合机制,设计、开发新型高性能永磁材料的报道较少。近日,中国科学院宁波材料技术与工程研究所稀土磁性功能材料实验室永磁研究组,通过结构设计调控磁性相间长程磁耦合作用,从而实现微观到宏观尺度“
“厉害了”折叠式石墨烯增强了锂离子电池储存的能量
由折叠石墨烯制成的阳极,会使电池的储能能力可以显著提高。同样5mg / cm 2石墨烯经折叠后的器件具有大于4mAh / cm 2的面积容量,这远远高于商业石墨阳极,并且其可以承受至少500次循环的充/放电,性能还不会有任何损失。韩国的研究人员认为,简单的折叠策略也可很容易地用于其他电极材料。 蔚山基础科学研究所(IBS),蔚山国立科学技术研究院(UN
上海交大团队成功实现常温下石墨烯催化C-C键断裂
近日,上海交通大学化学化工学院赵亚平教授科研团队首次报道石墨烯的催化活性,在常温条件下,石墨烯可催化硝酸银与乙醇反应生成氰化银,成功实现乙醇C-C键的断裂,该研究成果为石墨烯催化以及温和条件下实现C-C键断裂、合成新材料提供了重要的科学启示。相关研究成果于2017年12月29日在国际著名学术期刊《自然》(Nature)的子刊《科学报告》(Scientific
石墨烯
2018.02.06
新型二氧化钛表面室温下可光催化分解水制氢
记者近日从合肥工业大学获悉,该校科研人员成功构建了一种新型的锐钛矿二氧化钛表面模型,可实现二氧化钛可见光吸收及催化活性大幅提升,可为清洁能源开发提供新的路径。相关成果日前发表在国际著名期刊《先进功能材料》上。 二氧化钛具有优异的光催化性能,在光解水制氢、二氧化碳还原制备燃料以及有机污染物光解等领域具有广泛的应用前景。研究表明,以上催化反应均发生在二氧化
日本研发新负极材料 可让充电电池容量高寿命长
日本物质材料研究机构(NIMS)日前公布,他们的一个研究小组成功合成了氧化锰纳米片和石墨烯交替重叠的材料。该复合材料作为锂及钠离子充电电池的负极材料,可将电池充放电容量提高两倍以上,且能延长重复使用寿命,解决了容量和寿命不可兼得的问题。高容量化是二次电池的目标之一,目前其负极使用的是碳材料,理论上过渡金属氧化物具有高容量,有望成为碳材料的替代物。特别是具有分
喜讯!典型纳米材料规模化制备及产业化取得突破
从科技部获悉,近日,科技部高新司在北京组织专家对“典型纳米材料规模化制备技术及产业化”项目,进行了验收。纳米材料在高新技术领域有着广泛的应用前景,同时在传统产业升级改造中起到关键促进作用。攻克纳米材料规模化制备的关键技术和装备瓶颈,形成示范应用和规模化生产,对于发展纳米材料产业、提升传统产业并实现可持续发展具有重要意义。该项目建立了低温固相原位合成纳米WC-
能量密度达1000Wh/L!Sion Power公司将于年底量产可充电锂金属电池
据外媒报道,美国Sion Power公司将从2018年年底开始在亚利桑那州的图森工厂量产其拥有专利的Licerion可充电锂金属电池。该电池可应用于无人机和电动汽车,其比容量为500Kw/kg,能量密度为1000Wh/L,可循环使用450周期。 Licerion技术是Sion Power与德国化学公司巴斯夫合作研发的,它包含了一系列基于锂、硫材料的化学合成
《Science Advances》新配方可生产廉价环保塑料
研究人员发现了一种利用植物制造塑料的廉价方法,由此获得的塑料可同可口可乐的植物环保瓶媲美。图片来源:Coca-Cola 塑料拥有巨大的碳排放量:生产这种以石油为基础的材料每年至少带来1亿吨碳排放量。如今,一个来自美国威斯康辛大学麦迪逊分校的研究团队发明了一种利用糖和玉米芯制造塑料的廉价方法。如果这种塑料能以足够低的成本被生产出来,那么或许有一天它将代替全球
环保是个永恒的话题!废旧锂离子电池污染问题得以解决—阴极回收技术
经回收的废旧锂离子电池中的阴极离子再利用就像新的一样。来源:David Baillot/UC圣地亚哥雅各布斯工程学院 加州大学圣地亚哥分校的纳米工程师开发了一种节能回收工艺。修复已的锂离子电池阴极,使性能与新的一样好。这个过程包括从用过的电池中回收已经降解的阴极粒子,然后煮沸并加热。研究人员利用再生的阴极制造了新的电池。充电存储容量、充电时间和电池寿命均恢复