近日,中国科学院合肥研究院固体物理研究所纳米材料与器件技术研究部研究员孟国文课题组,在三维柔性表面增强拉曼散射(SERS)衬底的构筑及其对有机污染物的快速灵敏响应研究方面取得新进展。研究人员采用原位生长法制备出Ag纳米颗粒修饰的细菌纤维素柔性复合衬底,利用细菌纤维素的体积收缩特性进一步提高Ag颗粒密度和衬底的SERS活性,实现了对多种毒性有机污染物的快速检测。相关研究成果以Ag-Nanoparticles@Bacterial-Nanocellulose Composite as 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate为题,发表在ACS Applied Materials & Interfaces上。
与常规污染物相比,毒性有机污染物具有不易降解、生物累积性、迁移性和高毒性等特点,威胁人类健康和生态环境。传统的色谱、质谱检测技术所需设备复杂、检测周期长,难以实现环境中毒性有机污染物的临场快速检测。SERS技术因其具有灵敏度高、响应速度快、指纹效应等特点,在环境污染物的临场快速检测方面有广泛的应用前景。设计和制备敏感性高、信号重复性好的SERS衬底是实现SERS检测技术应用的关键因素之一。环境中的有机物污染物由于检测环境复杂,对SERS衬底的稳定性和机械柔韧性提出了更高的要求,因此,研发柔性SERS衬底成为研究的热点之一。目前,已报道的柔性SERS衬底的制备方法主要是将预先合成的贵金属纳米颗粒通过浸涂、过滤等方式修饰到柔性材料表面,这种方法制备的复合衬底中贵金属颗粒和柔性材料之间连接较弱,贵金属颗粒的负载数量有限。另外,在检测过程中贵金属颗粒容易从柔性基底上脱落,导致检测信号的稳定性和重复性差。
鉴于此,研究人员采用由细菌纳米纤维素组成的三维网络结构作为柔性载体,利用银镜反应在其表面原位生长均匀分布的Ag纳米颗粒,获得了高密度Ag纳米颗粒修饰的细菌纤维素柔性(Ag纳米颗粒@细菌纤维素)复合衬底,并利用细菌纤维素干燥时体积收缩的特性,进一步提高了Ag颗粒密度。这种高密度的Ag颗粒之间产生大量均匀分布的高活性SERS“热点”,因此,所制备的复合衬底表现出超高的SERS灵敏度和良好的信号重复性;亲水的细菌纤维素具有良好的渗透性和吸附性,可将目标分子有效捕获到高SERS活性区域,从而进一步提高了衬底的SERS检测灵敏度;Ag纳米颗粒原位生长并牢牢固定在细菌纤维素三维框架上,有效避免了银纳米颗粒的脱落,因此,该柔性衬底在弯曲、超声处理等不同的检测条件下仍然表现出较好的稳定性与高SERS灵敏度。利用这种Ag纳米颗粒@细菌纤维素复合衬底,不仅实现了对常规探针分子罗丹明6G的检测,而且实现了对多种毒性有机污染物(福美双、2-萘硫醇)的快速检测,并将其检测限分别降低到3.8×10-9 M和1.6×10-8 M。此外,福美双和2-萘硫醇的检测信号强度和浓度对数之间均呈现良好线性关系,表明该衬底在毒性有机污染物的定量快速检测中具有潜在的应用前景。
研究工作得到国家自然科学基金、中科院前沿科学重点研究项目及安徽省自然科学基金等的支持。
图1.Ag纳米颗粒@细菌纤维素复合结构的制备流程图。
图2.(a)体积收缩前细菌纤维素SEM图像;(b)和(c)不同放大倍数下的体积收缩前的Ag纳米颗粒@细菌纤维素复合结构的SEM图像;(d)体积收缩后的细菌纤维素SEM图像;(e)和(f)体积收缩后的Ag纳米颗粒@细菌纤维素复合结构的SEM图像,(f)中插图为Ag纳米颗粒的粒径分布。
图3.(a)和(b)超声前后的Ag纳米颗粒@细菌纤维素衬底的SEM图像;(c)超声前后的Ag纳米颗粒@细菌纤维素衬底对R6G的SERS光谱图;(d)Ag纳米颗粒@细菌纤维素衬底在初始和弯曲状态下对10-7 M R6G的SERS光谱,其中(d)中的插图是弯曲状态和裁剪成不同形状的Ag纳米颗粒@细菌纤维素衬底光学照片。
图4.(a)在10-5-10-10 M浓度下的福美双SERS信号;(b)福美双1382 cm-1特征峰的强度和浓度对数之间的线性拟合图;(c)2-萘硫醇在10-3-10-7 M不同浓度下的SERS信号;(d)2-萘硫醇1380 cm-1特征峰强度和浓度对数之间的线性拟合图。